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Abstract

In this work, we prove the existence and uniqueness of a strong regular solution
for a certain class of a nonlinear coupled system of reaction-diffusion equations
on a bounded domain with moving boundary. The exponential decay of the
energy of the solutions, under the same assumptions, is also proved. In addition,
we obtain approximate numerical solutions for systems of this type. In order
to compare the theoretical and the numerical behaviour of the solutions, we
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develop a Matlab code based on the Moving Finite Element Method (MFEM)
with high degree local approximations and we use an independent grid attached
to each dependent variable. Finally, numerical tests which show the influence
of the initial data on the exponential decay of the solution are performed.

Keywords: Nonlinear parabolic system, strong solution, moving boundary,
nonlocal diffusion term, adaptive grids

1. Introduction

In recent years, nonlinear parabolic partial differential equations (PDE) with
nonlocal terms have been extensively studied by several authors such as Zheng
[24], Chang [3], Corrêa [9] and Chipot [5, 6]. In particular, the existence, unique-
ness and the exponential decay of strong global solutions for a class of nonlocal
problems with moving boundaries is shown in [18]. The authors worked with
a diffusion coefficient depending on the integral of the dependent variable over
the time-dependent spatial domain. This type of diffusion coefficient, in a cylin-
drical domain, was initially proposed by Chipot and Lovat [4].

The most interesting real life problems involve more than one unknown func-
tion, so that to describe them a PDE system is necessary. References on systems
of nonlinear equations with nonlocal terms are not so abundant in the literature.
Raposo et al. [17], in 2008, studied the existence, uniqueness and exponential
decay of solutions for reaction-diffusion coupled systems of the form

{
ut − a(l(u))∆u + f(u− v) = α(u− v) in Ω×]0, T ],
vt − a(l(v))∆v − f(u− v) = α(v − u) in Ω×]0, T ],

with a(·) > 0, l a continuous linear form, f a Lipschitz-continuous function and
α a positive parameter. They also computed approximate solutions of these
systems using implicit finite differences. Recently, Duque et al. [11] considered
nonlinear systems of parabolic equations with a more general nonlocal diffusion
term working on two linear forms l1 and l2:

{
ut − a1(l1(u), l2(v))∆u + λ1|u|p−2u = f1(x, t) in Ω×]0, T ],
vt − a2(l1(u), l2(v))∆v + λ2|v|p−2v = f2(x, t) in Ω×]0, T ].

They improved the results obtained in [4, 9, 17] and also gave important re-
sults on polynomial and exponential decay, vanishing of the solutions in finite
time and localization properties such as waiting time effect. The same authors
proved, in [10], the convergence of a linearized Euler-Galerkin finite element
method for the above problem and presented some numerical results. In [2],
the authors investigated the propagation of an epidemic disease modeled by a
system of three PDE, where the ith equation is of the type

(ui)t − ai

(∫

Ω

uidx

)
∆ui = fi (u1, u2, u3) ,
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in a physical domain Ω ⊂ Rn, (n = 1, 2, 3). Santos et al. [20] established
the exponential energy decay of the solutions for nonlinear coupled systems
for beam equations with memory in noncylindrical domains. However, as in
[11, 12, 13, 19], for example, they did not address the numerical analysis and
simulation of the problem.

Our aim of this paper is to study the existence and uniqueness of a strong
regular solutions for coupled systems of parabolic equations of the form:





ut − a1

(∫

Ωt

v(x, t)dx

)
uxx = f1 (x, t) , in Q̂,

vt − a2

(∫

Ωt

u(x, t)dx

)
vxx = f2 (x, t) , in Q̂,

(1)

subject to the null Dirichlet boundary conditions, where Q̂ is a connected
bounded domain with lateral moving boundary. We generalize to systems of
nonlinear equation the results obtained in [18] . To the best of our knowledge,
none of the existing papers on solvability and stability for parabolic PDE sys-
tems deal with this type of diffusion in noncylindrical domains, so these results
are the first in this direction. Moreover, we perform the numerical analysis
directly in Q̂.

In order to prove the existence of a solution to this problem, we consider
a transformation τ , of class C2, from Q̂ into a cylinder Q and establish the
existence of a solution of the transformed problem in Q, by the Faedo-Galerkin
method. Then, using the function τ−1, we obtain the existence result for the
primary problem. We also prove that, for this model, the energy is strong
enough to produce exponential decay for the solution of the coupled system. In
(1), the coupling occurs in the time-dependent diffusion coefficient ai, which is
determined by a global quantity. So, this system has nonlocal nonlinearity.

Problem (1) arises in a large class of real models, namely, in biology, where it
could govern the spreading of two different species of populations that interact
in a time-dependent medium (the spatial domain) through the functions ai,
i = 1, 2. The supply of being by external sources is denoted by f1 and f2. In
this case the solution (u, v) describes the densities of the two populations. Since
we consider an expanding spatial domain, as time increase, there is an enlarged
area to compete and interact. So, it is reasonable to assume that the mobility
inside the medium depends on how crowded it is. Hence, it makes sense that
the diffusion rate of the population of species i depends on the entire population
of species j throughout the spatial domain, with j 6= i, rather than on the local
density. A related particular case of model (1) results from the assumption that
the velocity of migration depends only on the global population in a subdomain
of Q̂.

A general approach for the numerical simulation of time dependent systems
of PDEs is the use of finite elements. The MFEM, originally formulated by
Miller [16], provides a way of solving parabolic moving problems by using finite
elements on grids which are themselves time dependent. So, at each instant, the
method determines both the numerical solution of the problem and the position

3



of the moving nodes. The use of local polynomial approximations of any degree
was introduced by Sereno [21, 22] and developed by Coimbra [7, 8] to solve
problems in spatial domains of R2 with fixed boundary. In this work, we apply
a Matlab implementation which generalizes their numerical algorithms and is
prepared to handle the moving boundaries.

This paper is organized as follows: in section 2, we present the formulation
of the problem and the hypotheses on the data. In the two following sections, we
use the Galerkin approximation, Aubin-Lions Theorem and the energy method
introduced by Lions [15] to prove the global existence and uniqueness of strong
solutions for coupled systems (1). The asymptotic behaviour of the global solu-
tions for large t is investigated in Section 5. We perform a numerical study of
problem (1) in Section 6: we introduce the relevant aspects of the MFEM and
apply it to obtain an approximate numerical solution. To finalize this study, in
Section 7, we draw some conclusions.

2. Statement of the problem

Let Ω ⊂ Rn be a bounded domain with smooth boundary Γ = ∂Ω. In what
follows, let (·, ·), | · | and ((·, ·)), ‖ · ‖ be, respectively, the inner product and the
norms in L2(Ω) and H1

0 (Ω), given by

(u, v) =
∫

Ω

u(x)v(x)dx and |u|2 =
∫

Ω

u2dx ,

((u, v)) =
∫

Ω

∇u · ∇vdx and ‖u‖2 =
∫

Ω

|∇u|2dx .

If X is a Banach space, we denote by Lp(0, T ; X), 1 ≤ p ≤ ∞, the Banach
space of vector valued functions u : ]0, T [−→ X, which are measurable and
‖u(t)‖X ∈ Lp(]0, T [), with the norms:

‖u(t)‖Lp(0,T ;X) =

[∫ T

0

‖u(t)‖p
Xdt

] 1
p

, 1 ≤ p < ∞ ,

‖u(t)‖Lp(0,T ;X) = ess sup
0≤t<T

‖u(t)‖X , p = ∞ .

In this work, we study the solutions of one-dimensional coupled systems with
moving boundaries defined by

(Pu,v)





ut − a1

(∫

Ωt

v(x, t)dx

)
uxx = f1 (x, t) , for all (x, t) ∈ Q̂,

vt − a2

(∫

Ωt

u(x, t)dx

)
vxx = f2 (x, t) , for all (x, t) ∈ Q̂,

u (α(t), t) = u (β(t), t) = 0 , for all t ∈]0, T [,

v (α(t), t) = v (β(t), t) = 0 , for all t ∈]0, T [,

u(x, 0) = u0(x) , v(x, 0) = v0(x) , x ∈ Ω0 =]α(0), β(0)[,

(2)
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where Q̂ is a non-cylindrical domain of the plane R2, defined as follows:

Q̂ =
{
(x, t) ∈ R2 : α(t) < x < β(t), for all 0 < t < T

}
,

where T is an arbitrary positive real number, (·)t = ∂/∂t, (·)xx = ∂2/∂x2 and a
denotes a positive real continuous function. The lateral boundary of Q̂ is given
by Σ̂ =

⋃
0<t<T ({α(t), β(t)} × {t}). Moreover, we assume that α′(t) < 0 and

β′(t) > 0, for all t ∈ [0, T ].
Note that the hypotheses α′(t) < 0 and β′(t) > 0 imply that Q̂ is increasing,

in the sense that if t2 > t1, then the projection of [α(t1), β(t1)] onto the subspace
t = 0 is contained in the projection of [α(t2), β(t2)] onto the same subspace. This
also means that the real function γ(t) = β(t)− α(t) is increasing on 0 ≤ t < T .

Observe that when (x, t) varies in Q̂, the point (y, t) of R2, with y = (x −
α(t))/γ(t), varies in the cylinder Q =]0, 1[×]0, T [. Thus, we have the function
τ : Q̂ −→ Q given by τ(x, t) = (y, t), which is of class C2. The inverse τ−1

is also of class C2. The change of variable ω(y, t) = u(x, t), θ(y, t) = v(x, t),
g1(y, t) = f1(x, t) and g2(y, t) = f2(x, t) with x = α(t) + γ(t) y transforms
problem (Pu,v) into problem (Pω,θ), given by

(Pω,θ)





ωt − b1(y, t)ωy − a1

(
γ(t)

∫ 1

0

θ(y, t)dy

)
b2(t)ωyy = g1(y, t) in Q,

θt − b1(y, t)θy − a2

(
γ(t)

∫ 1

0

ω(y, t)dy

)
b2(t)θyy = g2(y, t) in Q,

ω(0, t) = ω(1, t) = 0 = θ(0, t) = θ(1, t) , for 0 < t < T,

ω(y, 0) = ω0(y) , θ(y, 0) = θ0(y) , y ∈]0, 1[,

where gi(y, t) = fi(α + γ y, t) , i = 1, 2, ω0(y) = u0(α(0) + γ(0) y) and θ0(y) =
v0(α(0) + γ(0) y). The coefficients b1(y, t) and b2(t) are defined by

b1(y, t) =
α′(t) + γ′(t)y

γ(t)
and b2(t) =

1
(γ(t))2

. (3)

Since we are interested in proving the existence of a strong solution in Q̂, let
us consider the following hypotheses:

(H1) α, β ∈ C2 ([0, T ];R) and 0 < γ0 < γ(t) < γ1 < ∞ , for all t ∈ [0, T ],
(H2) α′, β′ ∈ L1 (]0, T [) ∩ L2 (]0, T [) ,
(H3) (u0, v0) ∈ H1

0 (Ω0)×H1
0 (Ω0) , Ω0 =]α(0), β(0)[,

(H4) (f1, f2) ∈
[
L2

(
0, T ; L2 (Ωt)

) ∩ L1
(
0, T ; L2 (Ωt)

)]2
, Ωt =]α(t), β(t)[,

(H5) ai : R −→ R+ is lipschitz-continuous , i = 1, 2
with 0 < mai ≤ ai(s) ≤ Mai , for all s ∈ R.

We may now state the main Theorem of this paper:

Theorem 1. Under the assumptions (H1)− (H5), there exists a unique strong
solution u, v : Q̂ −→ R for problem (Pu,v), that is,

ut − a1 (l(v))uxx = f1 (x, t) in L2
(
0, T ; L2 (Ωt)

)
,

vt − a2 (l(u)) vxx = f2 (x, t) in L2
(
0, T ; L2 (Ωt)

)
,
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satisfying the regularity conditions:

(u, v) ∈ [
L∞

(
0, T ; H1

0 (Ωt) ∩H2 (Ωt)
)]2

,

(ut, vt) ∈
[
L2

(
0, T ;L2 (Ωt)

)]2
,

where l : L2 (Ωt) −→ R is a continuous linear form defined by l(φ) =
∫ β(t)

α(t)
φ(x, t)dx.

3. Existence of a solution for the transformed problem

In order to demonstrate the existence of a solution for the problem in Theo-
rem 1, we first prove the existence of a solution for problem (Pω,θ) by applying
the Faedo-Galerkin method, compactness argument and some technical ideas
and then we use the diffeomorphism to establish the existence of a solution for
the original problem. Consider the following hypotheses:

(H3′) (ω0, θ0) ∈ H1
0 (Ω)×H1

0 (Ω) ,

(H4′) (g1, g2) ∈
[
L2

(
0, T ;L2 (Ω)

) ∩ L1
(
0, T ; L2 (Ω)

)]2
,

where Ω =]0, 1[.

Theorem 2. Under the hypotheses (H1)−(H2), (H3′)−(H4′) and (H5), there
exists a solution ω, θ : Q −→ R of problem (Pω,θ), that is,

ωt − b1(y, t)ωy − a1 (l1(θ)) b2(t)ωyy = g1(y, t) in L2
(
0, T ;L2 (Ω)

)
,

θt − b1(y, t)θy − a2 (l1(ω)) b2(t)θyy = g2(y, t) in L2
(
0, T ; L2 (Ω)

)
,

which satisfies the following conditions:

(ω, θ) ∈ [
L∞

(
0, T ; H1

0 (Ω) ∩H2 (Ω)
)]2

,

(ωt, θt) ∈
[
L2

(
0, T ; L2 (Ω)

)]2
,

where the continuous linear form l1 is given by l1(χ) =
∫ 1

0
γ(t) χ(y, t)dy.

Proof. We use the Faedo-Galerkin method to construct approximate solutions
in a suitable finite dimensional space. Let B = {wn(y)}n∈N be a Hilbertian
basis in H1

0 (Ω) and Sm be the subspace spanned by the first m vectors of B,
that is Sm = [w1, w2, ..., wm], m = 1, 2, ... . Let us consider

ωm(t) =
m∑

i=1

cω
im(t)wi(y) ; θm(t) =

m∑

i=1

cθ
im(t)wi(y) , 0 ≤ t < tm , tm < T .

We have that (ωm(t), θm(t)) belongs to Sm × Sm and is the solution of the

6



system of ordinary differential equations




(
∂ωm

∂t
, w

)
−

(
b1

∂ωm

∂y
,w

)
− a1 (l1(θm)) b2

(
∂2ωm

∂y2
, w

)
= (g1, w) ,

for all w ∈ Sm,(
∂θm

∂t
, w

)
−

(
b1

∂θm

∂y
,w

)
− a2 (l1(ωm)) b2

(
∂2θm

∂y2
, w

)
= (g2, w) ,

for all w ∈ Sm,
ωm(0) = ω0m → ω0 strongly in H1

0 (Ω),

θm(0) = θ0m → θ0 strongly in H1
0 (Ω),

which we will denote by (Pm
ω,θ). As is well known, by Caratheodory’s Theorem,

problem (Pm
ω,θ) has a local solution (ωm(t), θm(t)) on some interval [0, tm[, 0 <

tm < T . The next a priori estimates permit to extension the solutions to the
interval [0, T ] and to take limits in the approximate solutions of (Pm

ω,θ).
We now deduce the a priori estimates which will be used in the proof of the

Theorem.
Estimate I: Taking w(t) = ωm(t) in the first equation of (Pm

ω,θ) and w(t) =
θm(t) in the second one, and taking into account that

(
−∂2ψm

∂y2
, w

)
=

(
∂ψm

∂y
,
∂w

∂y

)
, for all ψm, w ∈ Sm ,

we obtain

1
2

d

dt
|ωm(t)|2 −

(
b1

∂ωm

∂y
, ωm

)
+ a1 (l1(θm)) b2

∣∣∣∣
∂ωm(t)

∂y

∣∣∣∣
2

= (g1, ωm) ,

1
2

d

dt
|θm(t)|2 −

(
b1

∂θm

∂y
, θm

)
+ a2 (l1(ωm)) b2

∣∣∣∣
∂θm(t)

∂y

∣∣∣∣
2

= (g2, θm) .

(4)

Now, adding the two equations in (4) and using the equivalence of the norms in
H1

0 (Ω), we get

1
2

d

dt

(
|ωm(t)|2 + |θm(t)|2

)
−

(
b1

∂ωm

∂y
, ωm

)
−

(
b1

∂θm

∂y
, θm

)

+a1 (l1(θm)) b2 ‖ωm(t)‖2 + a2 (l1(ωm)) b2 ‖θm(t)‖2

= (g1, ωm) + (g2, θm) .
(5)

Integrating by parts the second and third terms in (5) and using the boundary
conditions, we obtain

∫ 1

0

b1
∂ψm

∂y
ψmdy =

∫ 1

0

b1

2
∂

∂y
|ψm(y, t)|2 dy = −1

2

∫ 1

0

γ′

γ
|ψm(y, t)|2 dy

= −1
2

γ′

γ
|ψm(t)|2 ,

(6)
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for ψm ∈ Sm. Using the last identity and the Schwarz inequality in (5), we have

1
2

d

dt

(
|ωm(t)|2 + |θm(t)|2

)
+

1
2

γ′

γ

(
|ωm(t)|2 + |θm(t)|2

)

+mab2

(
‖ωm(t)‖2 + ‖θm(t)‖2

)
≤ 1

2

(
|g1(t)|2 + |ωm(t)|2

)

+
1
2

(
|g2(t)|2 + |θm(t)|2

)
,

(7)
where ma = min {ma1 , ma2}. Integrating from 0 to t, we get

|ωm(t)|2 + |θm(t)|2 + 2ma

∫ t

0

b2

(
‖ωm(s)‖2 + ‖θm(s)‖2

)
ds

≤
∫ t

0

(
|g1(s)|2 + |g2(s)|2

)
ds +

∫ t

0

(
1 +

|γ′|
|γ|

) (
|ωm(s)|2 + |θm(s)|2

)
ds

+ |ω0m|2 + |θ0m|2 .

From (H1) and (H2), it follows that |γ′|/|γ| ≤ c0/γ0, where c0 is independent
of m. Let c∗ = min{1, 2ma

γ2
1
}. Then, using (H4′), ωm(0) = ω0m → ω0 strongly

in H1
0 (Ω), and θm(0) = θ0m → θ0 strongly in H1

0 (Ω). We then get

|ωm(t)|2 + |θm(t)|2 +
∫ t

0

(
‖ωm(s)‖2 + ‖θm(s)‖2

)
ds

≤ C + C

∫ t

0

(
|ωm(s)|2 + |θm(s)|2

)
ds,

(8)

where C = max{ c1
c∗ ,

1+
c0
γ0

c∗ }. Applying Gronwall’s Lemma to the last inequality,
we obtain

|ωm(t)|2 + |θm(t)|2 ≤ C1 (9)

and ∫ t

0

(
‖ωm(s)‖2 + ‖θm(s)‖2

)
ds ≤ C2, (10)

where C1 and C2 are positive constants, independent of m and t. From (9) and
(10) it follows that

(ωm) and (θm) are bounded in L∞
(
0, T ; L2(Ω)

)
,

(ωm) and (θm) are bounded in L2
(
0, T ; H1

0 (Ω)
)
.

(11)

Then we can extend the solution to the interval [0, T ]. Two more estimates are
required to pass to the limit when m →∞.

Estimate II: We want to estimate the derivatives ∂ωm/∂t and ∂θm/∂t. Mul-
tiplying by w(t) = ∂ωm(t)/∂t and w(t) = ∂θm(t)/∂t in the first and second
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equations of (Pm
ω,θ), respectively, we obtain

(
∂ωm

∂t
,
∂ωm

∂t

)
−

(
b1

∂ωm

∂y
,
∂ωm

∂t

)
+ a1 (l1(θm)) b2

(
∂ωm

∂y
,
∂2ωm

∂y∂t

)

=
(

g1,
∂ωm

∂t

)
,

(
∂θm

∂t
,
∂θm

∂t

)
−

(
b1

∂θm

∂y
,
∂θm

∂t

)
+ a2 (l1(ωm)) b2

(
∂θm

∂y
,
∂2θm

∂y∂t

)

=
(

g2,
∂θm

∂t

)
.

Adding the two equations, we get
∣∣∣∣
∂ωm(t)

∂t

∣∣∣∣
2

+
∣∣∣∣
∂θm(t)

∂t

∣∣∣∣
2

−
(

b1
∂ωm

∂y
,
∂ωm

∂t

)
−

(
b1

∂θm

∂y
,
∂θm

∂t

)

+a1 (l1(θm)) b2

(
∂ωm

∂y
,
∂2ωm

∂y∂t

)
+ a2 (l1(ωm)) b2

(
∂θm

∂y
,
∂2θm

∂y∂t

)

=
(

g1,
∂ωm

∂t

)
+

(
g2,

∂θm

∂t

)
.

(12)
The third and fourth terms in (12) can be estimated as follows:

∣∣∣∣
(

b1
∂ψm

∂y
,
∂ψm

∂t

)∣∣∣∣ ≤ |b1|
∣∣∣∣
∂ψm(t)

∂y

∣∣∣∣
∣∣∣∣
∂ψm(t)

∂t

∣∣∣∣

≤ |α′|+ |γ′|
γ0

‖ψm(t)‖
∣∣∣∣
∂ψm(t)

∂t

∣∣∣∣ ,
(13)

using the Schwarz inequality and hypothesis (H1). Each one of the last two
terms on the left hand side of equation (12) yields the inequality

ai (l1(ψm)) b2

(
∂ψm

∂y
,
∂2ψm

∂y∂t

)
= ai (l1(vm)) b2

1
2

d

dt

∣∣∣∣
∂ψm(t)

∂y

∣∣∣∣
2

≥ mai

γ2
1

1
2

d

dt

∣∣∣∣
∂ψm(t)

∂y

∣∣∣∣
2

,

(14)

for ψm ∈ Sm. Substituting (13) and (14), with ψm = ωm and ψm = θm, in (12),
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we obtain
∣∣∣∣
∂ωm(t)

∂t

∣∣∣∣
2

+
∣∣∣∣
∂θm(t)

∂t

∣∣∣∣
2

+
ma

γ2
1

1
2

d

dt

(∣∣∣∣
∂ωm(t)

∂y

∣∣∣∣
2

+
∣∣∣∣
∂θm(t)

∂y

∣∣∣∣
2
)

≤ |α′|+ |γ′|
γ0

‖ωm(t)‖
∣∣∣∣
∂ωm(t)

∂t

∣∣∣∣ +
|α′|+ |γ′|

γ0
‖θm(t)‖

∣∣∣∣
∂θm(t)

∂t

∣∣∣∣

+
1
2

(
|g1(t)|2 +

∣∣∣∣
∂ωm(t)

∂t

∣∣∣∣
2
)

+
1
2

(
|g2(t)|2 +

∣∣∣∣
∂θm(t)

∂t

∣∣∣∣
2
)

.

(15)
We now apply the Young inequality to the first two terms of the right hand side
of (15) and we obtain

1
4

(∣∣∣∣
∂ωm(t)

∂t

∣∣∣∣
2

+
∣∣∣∣
∂θm(t)

∂t

∣∣∣∣
2
)

+
ma

γ2
1

1
2

d

dt

(
‖ωm(t)‖2 + ‖θm(t)‖2

)

≤
( |α′|+ |γ′|

γ0

)2 (
‖ωm(t)‖2 + ‖θm(t)‖2

)
+

1
2

(
|g1(t)|2 + |g2(t)|2

)
.

Integrating from 0 to t, we have

∫ t

0

(∣∣∣∣
∂ωm(s)

∂s

∣∣∣∣
2

+
∣∣∣∣
∂θm(s)

∂s

∣∣∣∣
2
)

ds +
2ma

γ2
1

(
‖ωm(t)‖2 + ‖θm(t)‖2

)

≤ 4
γ2
0

∫ t

0

(|α′|+ |γ′|)2
(
‖ωm(s)‖2 + ‖θm(s)‖2

)
ds

+2
∫ t

0

(
|g1(s)|2 + |g2(s)|2

)
ds +

2ma

γ2
1

(
‖ω0m‖2 + ‖θ0m‖2

)
.

From (H2), we can ensure that

∫ t

0

(|α′|+ |γ′|)2 ‖ψm(s)‖2 ds ≤ c1

∫ t

0

‖ψm(s)‖2 ds , for ψm ∈ Sm .

Therefore, in analogy to what we did for the first estimate, there is a positive
constant C which does not depend on t and m, such that

∫ t

0

(∣∣∣∣
∂ωm(s)

∂s

∣∣∣∣
2

+
∣∣∣∣
∂θm(s)

∂s

∣∣∣∣
2
)

ds + ‖ωm(t)‖2 + ‖θm(t)‖2

≤ C + C

∫ t

0

(
‖ωm(s)‖2 + ‖θm(s)‖2

)
ds .

The Gronwall inequality yields

‖ωm(t)‖2 + ‖θm(t)‖2 ≤ C1, (16)

10



and it follows that
∫ t

0

(∣∣∣∣
∂ωm(s)

∂s

∣∣∣∣
2

+
∣∣∣∣
∂θm(s)

∂s

∣∣∣∣
2
)

ds ≤ C2. (17)

Finally,

(ωm) and (θm) are bounded in L∞
(
0, T ;H1

0 (Ω)
)
,

(∂ωm

∂t ) and (∂θm

∂t ) are bounded in L2
(
0, T ;L2(Ω)

)
.

(18)

Estimate III: Setting w(t) = −∂2ωm(t)/∂y2 in the first equation of (Pm
ω,θ)

and w(t) = −∂2θm(t)/∂y2 in the second one, and integrating the first term by
parts, we obtain

1
2

d

dt
‖ωm(t)‖2 −

(
b1

∂ωm

∂y
,−∂2ωm

∂y2

)
− a1 (l1(θm)) b2

(
∂2ωm

∂y2
,−∂2ωm

∂y2

)

=
(

g1,−∂2ωm

∂y2

)
,

1
2

d

dt
‖θm(t)‖2 −

(
b1

∂θm

∂y
,−∂2θm

∂y2

)
− a2 (l1(ωm)) b2

(
∂2θm

∂y2
,−∂2θm

∂y2

)

=
(

g2,−∂2θm

∂y2

)
.

Adding these two equations, we obtain

1
2

d

dt

(
‖ωm(t)‖2 + ‖θm(t)‖2

)
+

(
b1

∂ωm

∂y
,
∂2ωm

∂y2

)
+

(
b1

∂θm

∂y
,
∂2θm

∂y2

)

+a1 (l1(θm)) b2

∣∣∣∣
∂2ωm(t)

∂y2

∣∣∣∣
2

+ a2 (l1(ωm)) b2

∣∣∣∣
∂2θm(t)

∂y2

∣∣∣∣
2

=
(

g1,−∂2ωm

∂y2

)
+

(
g2,−∂2θm

∂y2

)
.

(19)

Applying the arguments used in Estimate II, we obtain
(

b1
∂ψm

∂y
,
∂2ψm

∂y2

)
≤ |α′|+ |γ′|

γ0
‖ψm(t)‖

∣∣∣∣
∂2ψm(t)

∂y2

∣∣∣∣

≤ ε

2

( |α′|+ |γ′|
γ0

)2

‖ψm(t)‖2 +
1
2ε

∣∣∣∣
∂2ψm(t)

∂y2

∣∣∣∣
2

,

(20)

for all ε > 0 and ψm ∈ Sm. The fourth term of the equation in (19) implies that

a1 (l1(θm)) b2

∣∣∣∣
∂2ωm(t)

∂y2

∣∣∣∣
2

≥ ma1

γ2
1

∣∣∣∣
∂2ωm(t)

∂y2

∣∣∣∣
2

, (21)

and from the first term on the right hand side of (19), it follows that
∣∣∣∣−

(
g2,

∂2ωm

∂y2

)∣∣∣∣ ≤ |g2(t)|
∣∣∣∣
∂2ωm(t)

∂y2

∣∣∣∣ ≤
ε

2
|g2(t)|2 +

1
2ε

∣∣∣∣
∂2ωm(t)

∂y2

∣∣∣∣
2

. (22)

11



Note that we have inequalities similar to those in (21) and (22) for the function
θm. Using these inequalities for θm, (21), (22) and substituting (20) with ψm =
ωm and ψm = θm in equation (19), we obtain

d

dt

(
‖ωm(t)‖2 + ‖θm(t)‖2

)
+ 2

(
ma

γ2
1

− 1
ε

) (∣∣∣∣
∂2ωm(t)

∂y2

∣∣∣∣
2

+
∣∣∣∣
∂2θm(t)

∂y2

∣∣∣∣
2
)

≤ ε

( |α′|+ |γ′|
γ0

)2 (
‖ωm(t)‖2 + ‖θm(t)‖2

)
+ ε

(
|g1(t)|2 + |g2(t)|2

)
,

(23)
where ma = min {ma1 , ma2}. Observe that, for ε > γ2

1/ma, one has

ma

γ2
1

− 1
ε

> 0 .

So, set ε = 2γ2
1/ma, for example. Then, integrating from 0 to t, we obtain

‖ωm(t)‖2 + ‖θm(t)‖2 +
ma

γ2
1

∫ t

0

(∣∣∣∣
∂2ωm(s)

∂y2

∣∣∣∣
2

+
∣∣∣∣
∂2θm(s)

∂y2

∣∣∣∣
2
)

ds

≤ 2γ2
1

ma

[∫ t

0

( |α′|+ |γ′|
γ0

)2 (
‖ωm(s)‖2 + ‖θm(s‖2

)
ds+

+
∫ t

0

|g1(s)|2 + |g2(s)|2 ds

]
+ ‖ω0m‖2 + ‖θ0m‖2 .

Using (H4′) and the strong convergencies in H1
0 (Ω), ωm(0) = ω0m → ω0 and

θm(0) = θ0m → θ0, we have that

‖ωm(t)‖2 + ‖θm(t)‖2 +
∫ t

0

(∣∣∣∣
∂2ωm(s)

∂y2

∣∣∣∣
2

+
∣∣∣∣
∂2θm(s)

∂y2

∣∣∣∣
2
)

ds

≤ C + C

∫ t

0

‖ωm(s)‖2 + ‖θm(s)‖2 ds,

(24)
where C is a positive constant that does not depend on t and m. By Gronwall’s
inequality and in analogy to what we did for the first two estimates, we can
conclude that

(∂2ωm

∂y2 ) and (∂2θm

∂y2 ) are bounded in L2
(
0, T ; L2(Ω)

)
. (25)

From the estimates obtained in (11), (18) and (25), we can extract subsequences
of (ωm) and (θm), which we still denote by (ωm) and (θm), respectively, such
that

ωm ⇀ ω and θm ⇀ θ in L2
(
0, T ; H1

0 (Ω)
)
,

ωm ⇀? ω and θm ⇀? θ in L∞
(
0, T ; H1

0 (Ω)
)
,

∂ωm

∂t
⇀

∂ω

∂t
and

∂θm

∂t
⇀

∂θ

∂t
in L2

(
0, T ; L2(Ω)

)
,

∂2ωm

∂y2
⇀

∂2ω

∂y2
and

∂2θm

∂y2
⇀

∂2θ

∂y2
in L2

(
0, T ; L2(Ω)

)
.

(26)
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From the Aubin-Lions Compactness Lemma (see [15]), as H1
0 (Ω) ↪→c L2(Ω) =(

L2(Ω)
)′

↪→ L2(Ω), we have

ωm → ω and θm → θ in L2
(
0, T ;L2(Ω)

)
. (27)

Hence, passing if necessary to a subsequence (still denoted by the same symbol),
one has

ωm → ω and θm → θ a.e. in Ω×]0, T [ . (28)

Now we pass to the limit as m → ∞. To pass to the limit in the nonlinear
part, it is required to prove that

a1 (l1 (θm)) → a1 (l1(θ)) in L2(]0, T [) . (29)

Since function a1 is continuous by (H5), it is sufficient to check that l1 (θm) −
l1(θ) → 0 in L2(]0, T [), for each fixed t. In fact, we have that

∫ T

0

|l1 (θm)− l1(θ)|2 dt =
∫ T

0

|l1 (θm − θ)|2 dt ≤ C

∫ T

0

|θm − θ|2 dt < ε .

The last inequality follows from the second convergency in (27). Applying the
same arguments, we obtain

a2 (l1 (ωm)) → a2 (l1(ω)) in L2(]0, T [) . (30)

Using the convergencies in (26), (29) and (30), we can pass to the limit as
m →∞ in the approximate problem (Pm

ω,θ) and obtain the following :

∂ω

∂t
− b1(y, t)

∂ω

∂y
− a1 (l1(θ)) b2(t)

∂2ω

∂y2
= g1(y, t) em L2

(
0, T ; L2 (Ω)

)
,

∂θ

∂t
− b1(y, t)

∂θ

∂y
− a2 (l1(ω)) b2(t)

∂2θ

∂y2
= g2(y, t) em L2

(
0, T ; L2 (Ω)

)
.

Now, we will verify the initial conditions. In fact, using the regularity result
we have

ω, θ ∈ C0
(
0, T ;L2(Ω)

)
.

In this manner, it makes sense to calculate ω(0) and θ(0). Let us consider
z ∈ C1 (0, T ;R), with z(0) = 1 and z(T ) = 0. Since the third convergency in
(26) implies that

∫ T

0

(
∂ωm

∂t
, ϑ

)
zdt →

∫ T

0

(
∂ω

∂t
, ϑ

)
zdt , ϑ ∈ L2(Ω) ,

performing integration by parts, we obtain

− (ωm(0), ϑ)−
∫ T

0

(ωm, ϑ)
∂z

∂t
dt → − (ω(0), ϑ)−

∫ T

0

(ω, ϑ)
∂z

∂t
dt . (31)
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From (31) and using the second convergency in (26), we get (ωm(0), ϑ) →
(ω(0), ϑ), for all ϑ ∈ H1

0 (Ω). But ωm(0) converges strongly to ω0 in L2(Ω),
and consequently weakly in L2(Ω). Therefore, (ωm(0), ϑ) → (ω0, ϑ), for all
ϑ ∈ H1

0 (Ω). From the uniqueness of the limit, (ω(0), ϑ) → (ω0, ϑ), for all
ϑ ∈ H1

0 (Ω). Thus ω(0) = ω0. Similarly, we conclude that θ(0) = θ0. Hence
problem (Pω,θ) has a solution.

In the next section, we address the uniqueness of the solution of (Pω,θ).

4. Uniqueness of the solution

The uniqueness of the global strong solution for the transformed problem
with fixed boundaries is guaranteed by the following theorem.

Theorem 3. Let ω, θ : Q −→ R be a global strong solution of (Pω,θ) given by
Theorem (2), (ω0, θ0) ∈ H1

0 (Ω)×H1
0 (Ω) and 0 < T < ∞. Suppose that function

ai is Lipschitzian with constant Ai > 0, for i = 1, 2, that is,

|ai (s1)− ai (s2)| ≤ Ai |s1 − s2| , for all s1, s2 ∈ R .

If (H1) and (H2) hold, then problem (Pω,θ) has a unique solution.

Proof. Let (ω1, θ1) and (ω2, θ2) be two solutions of problem (Pω,θ), that is,

∂ω1

∂t
− b1(y, t)

∂ω1

∂y
− a1 (l1(θ1)) b2(t)

∂2ω1

∂y2
= g1(y, t),

∂θ1

∂t
− b1(y, t)

∂θ1

∂y
− a2 (l1(ω1)) b2(t)

∂2θ1

∂y2
= g2(y, t),

(32)

with ω1(0, t) = ω1(1, t) = 0, θ1(0, t) = θ1(1, t) = 0 and

∂ω2

∂t
− b1(y, t)

∂ω2

∂y
− a1 (l1(θ2)) b2(t)

∂2ω2

∂y2
= g1(y, t),

∂θ2

∂t
− b1(y, t)

∂θ2

∂y
− a2 (l1(ω2)) b2(t)

∂2θ2

∂y2
= g2(y, t),

(33)

with ω2(0, t) = ω2(1, t) = 0 and θ2(0, t) = θ2(1, t) = 0. Subtracting equations
(33) from equations (32), we get, respectively,

∂ω1

∂t
− ∂ω2

∂t
− b1

(
∂ω1

∂y
− ∂ω2

∂y

)
− a1 (l1(θ1)) b2

∂2ω1

∂y2

+a1 (l1(θ2)) b2
∂2ω2

∂y2
= 0,

∂θ1

∂t
− ∂θ2

∂t
− b1

(
∂θ1

∂y
− ∂θ2

∂y

)
− a2 (l1(ω1)) b2

∂2θ1

∂y2

+a2 (l1(ω2)) b2
∂2θ2

∂y2
= 0,
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and it follows that (q, r) = (ω1 − ω2, θ1 − θ2) is a solution of

∂q

∂t
− b1

∂q

∂y
− a1 (l1(θ1)) b2

∂2ω1

∂y2
+ a1 (l1(θ2)) b2

∂2ω2

∂y2
= 0,

∂r

∂t
− b1

∂r

∂y
− a2 (l1(ω1)) b2

∂2θ1

∂y2
+ a2 (l1(ω2)) b2

∂2θ2

∂y2
= 0,

,

in L2
(
0, T ;L2 (Ω)

)
, with q(0) = 0 and r(0) = 0. Taking the inner product in

L2 (Ω), with q in the first equation and with r in the second one, integrating
by parts, and adding and subtracting a1 (l1 (θ1)) b2

(
∂ω2
∂y , ∂q

∂y

)
from the first

equation, and a2 (l1 (ω1)) b2

(
∂θ2
∂y , ∂r

∂y

)
from the second equation, we obtain

1
2

d

dt
|q(t)|2 +

1
2

γ′

γ
|q(t)|2 + a1 (l1 (θ1)) b2

[(
∂ω1

∂y
,
∂q

∂y

)
−

(
∂ω2

∂y
,
∂q

∂y

)]

= [a1 (l1 (θ2))− a1 (l1 (θ1))] b2

(
∂ω2

∂y
,
∂q

∂y

)

and

1
2

d

dt
|r(t)|2 +

1
2

γ′

γ
|r(t)|2 + a2 (l1 (ω1)) b2

[(
∂θ1

∂y
,
∂r

∂y

)
−

(
∂θ2

∂y
,
∂r

∂y

)]

= [a2 (l1 (ω2))− a2 (l1 (ω1))] b2

(
∂θ2

∂y
,
∂r

∂y

)
.

Adding these two equations, we have

1
2

d

dt

(
|q(t)|2 + |r(t)|2

)
+

1
2

γ′

γ

(
|q(t)|2 + |r(t)|2

)

+a1 (l1 (θ1)) b2

∣∣∣∣
∂q(t)
∂y

∣∣∣∣
2

+ a2 (l1 (ω1)) b2

∣∣∣∣
∂r(t)
∂y

∣∣∣∣
2

= [a1 (l1 (θ2))− a1 (l1 (θ1))] b2

(
∂ω2

∂y
,
∂q

∂y

)

+ [a2 (l1 (ω2))− a2 (l1 (ω1))] b2

(
∂θ2

∂y
,
∂r

∂y

)
.

(34)
The third term of the last equation implies that

a1 (l1 (θ1)) b2

∣∣∣∣
∂q(t)
∂y

∣∣∣∣
2

= a1 (l1 (θ1)) b2 ‖q(t)‖2 ≥ ma1

γ2
1

‖q(t)‖2 (35)

and, similarly, we have

a2 (l1 (ω1)) b2

∣∣∣∣
∂r(t)
∂y

∣∣∣∣
2

≥ ma2

γ2
1

‖r(t)‖2 . (36)
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By the properties of ai and l1, using the Schwarz inequality and (H1), one
obtains the following upper bounds for the terms on the right hand side of (34)
:

A1

γ2
0

|l1 (θ2)− l1 (θ1)|
∣∣∣∣
∂ω2(t)

∂y

∣∣∣∣
∣∣∣∣
∂q(t)
∂y

∣∣∣∣ ≤
A1c0

γ2
0

|q(t)|
∣∣∣∣
∂ω2(t)

∂y

∣∣∣∣ ‖q(t)‖ ,

A2

γ2
0

|l1 (ω2)− l1 (ω1)|
∣∣∣∣
∂θ2(t)

∂y

∣∣∣∣
∣∣∣∣
∂r(t)
∂y

∣∣∣∣ ≤
A2c0

γ2
0

|r(t)|
∣∣∣∣
∂θ2(t)

∂y

∣∣∣∣ ‖r(t)‖ .

(37)

Substituting (35) to (37) in equation (34) and multiplying by 2, similarly to
(23), we obtain

d

dt

(
|q(t)|2 + |r(t)|2

)
+

(
2ma

γ2
1

− 1
ε

) (
‖q(t)‖2 + ‖r(t)‖2

)

≤ ε

(
Ac0

γ2
0

)2
(
|q(t)|2

∣∣∣∣
∂ω2(t)

∂y

∣∣∣∣
2

+ |r(t)|2
∣∣∣∣
∂θ2(t)

∂y

∣∣∣∣
2
)

+
|γ′|
γ0

(
|q(t)|2 + |r(t)|2

)
,

for some ε > γ2
1/ma/2, where A = max{A1, A2}. Setting ε = γ2

1/ma, for
example, and integrating from 0 to t in both members of the last inequality, it
follows that

|q(t)|2 + |r(t)|2 ≤
∫ t

0

ϕ(s)
(
|q(s)|2 + |r(s)|2

)
ds , (38)

where the function ϕ ∈ L1(]0, T [) is defined by

ϕ(s) =
γ2
1

ma

(
Ac0

γ2
0

)2
(∣∣∣∣

∂ω2

∂y
(s)

∣∣∣∣
2

+
∣∣∣∣
∂θ2

∂y
(s)

∣∣∣∣
2
)

+
|γ′(s)|

γ0
.

Finally, by the Gronwall inequality we obtain |q(t)|2 + |r(t)|2 = 0, which is
equivalent to q(t) = 0 and r(t) = 0. Thus ω1 = ω2 and θ1 = θ2.

Now we are in position to prove Theorem 1.

Proof. Let (ω, θ) be the solution of problem (Pω,θ) with initial data ω0(y) =
u0 (α(0) + γ(0)y) and θ0(y) = v0 (α(0) + γ(0)y). As u(x, t) = ω(y, t) and
v(x, t) = θ(y, t), where x = α(t) + γ(t)y, in order to verify that (u(x, t), v(x, t))
given by Theorem 1 is the solution of problem (Pu,v), it is sufficient to observe
that the transformation τ : Q̂ −→ Q is a diffeomorphism of class C2. In fact, by
the equalities ut = ωt − b1(y, t)ωy and uxx = b2(t)ωyy, vt = θt − b1(y, t)θy and
vxx = b2(t)θyy, the existence of a solution for problem (Pω,θ) and the regularity
of (ω(y, t), θ(y, t)) given by Theorem 2, we can conclude that (u(x, t), v(x, t))
is a solution of (Pω,θ). Finally, the uniqueness of the solution for (Pu,v) is a
consequence of the uniqueness of the solution for (Pω,θ), because u = ω and
v = θ.
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5. Exponential decay of the solution

A great number of works have dealt with the weak or regular solutions for
parabolic and hyperbolic equations with moving boundaries. In our problem,
it brings essential difficulties, because (the geometry of) the domain influences
the correctness of the corresponding problem (see [14]).

The goal of this section is to establish a rate of decay for the energy associated
to problem (Pu,v). Therefore, we obtain the asymptotic behaviour, for a large
t, of the natural energy

E(t) =
1
2

(
|u(t)|2L2(Ωt)

+ |v(t)|2L2(Ωt)

)
, (39)

inside the time dependent domain Q̂. Thus, we can state:

Theorem 4. Assuming the hypotheses of Theorem 1, if f1(x, t) = f2(x, t) = 0
in (Pu,v), then function E satisfies

E(t) ≤ E(0)e−δt , for all t ≥ 0 , with δ > 0 .

In order to prove this theorem, we need to establish Poincaré’s inequality in
Ωt. Thus we have:

Lemma 5. If u ∈ H1
0 (Ωt) then

|u(t)|2L2(Ωt)
≤ γ2(t) |ux(t)|2L2(Ωt)

.

Proof. In fact, from the Fundamental Theorem of Calculus, we have that

u(x, t) =
∫ x

α(t)

∂

∂ξ
u(ξ, t)dξ .

From this and Schwarz’s inequality, we obtain

|u(x, t)|2R ≤ γ(t) |ux(t)|2L2(Ωt)
.

Integrating in Ωt, we get

|u(t)|2L2(Ωt)
≤ γ2(t) |ux(t)|2L2(Ωt)

.

Hence, we are in a position to prove Theorem 4.

Proof. Consider the two differential equations in (2). Taking the inner product
in L2(Ωt), when f1 = f2 = 0, with u(x, t) in the first equation and with v(x, t)
in the second one, we have

(ut, u)− a1(l(v)) (uxx, u) = 0,

(vt, v)− a2(l(u)) (vxx, v) = 0.
(40)
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Applying Leibnitz rule and using the null Dirichlet boundary conditions in the
first term of each equation in (40), yields

(ut, u) =
1
2

d

dt

∫

Ωt

|u(x, t)|2 dx,

(vt, u) =
1
2

d

dt

∫

Ωt

|v(x, t)|2 dx.

(41)

Integrating by parts the second term in (40) and from the boundary conditions,
we obtain

(uxx, u) = − |ux(t)|2L2(Ωt)
,

(vxx, v) = − |vx(t)|2L2(Ωt)
.

(42)

Substituting (41) and (42) in (40), adding the two equations and using (39),
one gets

d

dt
E(t) + a1(l(v)) |ux(t)|2L2(Ωt)

+ a2(l(u)) |vx(t)|2L2(Ωt)
= 0 .

By hypothesis (H5), as ma = min{ma1 ,ma2}, we obtain

d

dt
E(t) + ma

(
|ux(t)|2L2(Ωt)

+ |vx(t)|2L2(Ωt)

)
≤ 0 . (43)

From the last inequality, we have that d
dtE(t) ≤ 0, for all t ≥ 0, since ma > 0.

So, the energy E is a nonnegative decreasing function.
By Lemma 5 and (H1), we get Poincaré’s inequalities

|u(t)|2L2(Ωt)
≤ γ2

1 |ux(t)|2L2(Ωt)
,

|v(t)|2L2(Ωt)
≤ γ2

1 |vx(t)|2L2(Ωt)
.

Thus, from this and the inequality in (43), we obtain

d

dt
E(t) +

ma

γ2
1

(
|u(t)|2L2(Ωt)

+ |v(t)|2L2(Ωt)

)
≤ 0 , for all t ≥ 0 ,

and
d

dt

(
E(t)eδt

) ≤ 0 ,

where δ = 2ma/γ2
1 . Integrating from 0 to t, we conclude that

E(t) ≤ E(0) e−δt ,

which proves the exponential decay of the solution when both the reaction forces
f1 and f2 are null.

Remark 1: When f1 and f2 decay in an appropriate way (see [12]), we can
obtain the same result as in Theorem 4 with f1(x, t) 6= 0 and f2(x, t) 6= 0.
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Remark 2: The results in Theorems 1 and 4 can be easily generalized to





ut − a1

(∫

Ωt

v(x, t)dx

)
∆u = f1(x, t) , in Q̂,

vt − a2

(∫

Ωt

u(x, t)dx

)
∆v = f2(x, t) , in Q̂,

where Q̂ ⊂ Rn+1 (n ≥ 1) is a bounded non-cylindrical domain defined by

Q̂ =
⋃

0<t<∞
Ωt × {t} ,

with lateral boundary Σ̂ = ∪0<t<∞(Γt × {t}). We refer the reader to [19, 13]
for further details.

6. Numerical results

In this section we apply a general-purpose Matlab code based on the formu-
lation of MFEM with higher order basis functions to determine the approximate
solution of physical problems described by a system of parabolic time-dependent
PDEs

ut = Auxx + f , x ∈ Ωt , t ≥ 0 , (44)

where u = [u1(x, t), ..., un(x, t)]T is the solution vector, under the initial condi-
tion u(x, 0) = u0(x) defined on Ω0. In this mathematical model, the entries of
both matrix A and vector f may be functions of u , ∂u/∂x and the independent
space and time variables. Problem (Pu,v) is a particular case of this system for
n = 2, where f = f(x, t) and matrix A is diagonal with ai,i =

∫
Ωt

ui(x, t)dx. We
should point out that our numerical algorithm allows us to solve the problem
immediately in the non cylindrical domain. Below, we present a brief description
of some fundamental aspects of our formulation of the MFEM.

6.1. Formulation of the method
To construct the semi-discrete approximation, we consider an initial inde-

pendent partition of Ω0 associate with each dependent variable um of (44). So,
we define the Nm − 1 interior space nodes, of the mth grid

Gm : α(0) < Xm,2 < . . . < Xm,Nm < β(0) .

The main characteristic of the MFEM is the mobility of grid nodes allowing the
adaptivity of the spatial mesh. These are treated as unknown time-dependent
variables which must be evaluated as part of the solution procedure. Therefore,
the length of each finite element

Ωm,e(t) = [Xm,e(t), Xm,e+1(t)] , t ≥ 0 ,
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vary continuously with time so that the solution becomes suitably represented.
To solve efficiently problems with moving boundaries, a special boundary tech-
nique is developed by the introduction of two nodes Xm,1(t) and Xm,Nm+1(t)
describing the position of the moving ends of Ωt at each instant t. Approximat-
ing the mth dependent variable on the canonical element Ωm,e by a polynomial
of degree r, we may write

Um,e(x, t) =
r+1∑

j=1

u(xj
m,e, t)φ

j
m,e(x) , (45)

where xj
m,e is the jth interpolation point of Ωm,e(t) and {φj

m,e(x)}j=1,...,r+1

represents the local polynomial basis functions. The arbitrary degree r is chosen
by the user and might be different in two adjacent elements of the mth grid then,
in general, we have r = r(m, e) > 1. The interpolating points are defined as
in [1], in such a way that to minimize the maximum absolute error of the local
approximation.

In the development of numerical algorithm, the mth component of the nu-
merical approximation U of u is smoothed in a neighbourhood of each Xm,e

through cubic Hermite polynomials, in such way that its possible to define ap-
proximations of spatial derivatives at spatial nodes. Um(·, t) is chosen to be
continuous function on Ωt and depends on nodal amplitudes and nodal posi-
tions of attached grid. Let {ξj

m(t) : j = 1, 2, ..., Ñm} be the set of the global
interpolation points in Ωt. Therefore, for a fixed time t > 0, we define the
interpolant Um by

Um(x, t) = Ψ(m)U(m) , (46)

where U(m) =
(
um(ξ1

m), ..., um(ξÑm
m )

)T

and Ψ(m) =
(
Φ1

m(x), ..., ΦÑm
m (x)

)
rep-

resents the global polynomial basis functions.
The solution of PDE system is obtained by minimizing the sum of square

L2-norm of discretized residuals in order to the time derivatives of the solutions
on the interpolation nodes and nodal velocities, that is,

min
U̇j

m, Ẋm,e

n∑
m=1

(∫

Ωt

R2
mdx + Pm

)
, (47)

where (˙) = d/dt and Rm is the residual of the mth discretized PDE. Spatial
discretization gives origin to a system of ordinary differential equations (ODE),
that can degenerate when singularities occur. These can be of two kinds: par-
allelism and nodal coalescence. While nodal coalescence is overcome by fixing
the minimum internodal distance allowed, parallelism is dealt by the addition
of a penalty term to the objective function in (47).

The MFEM is a continuously moving grid method, where the node movement
and PDE integration are fully coupled. By the minimization process, each of
the PDEs from (44) generates a system of ODEs. The semi-discrete equations
resulting from the application of MFEM to the mathematical model given by
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(44) are combined with the boundary conditions to yield a system of ODEs that
can be reordered to matrix form

M(t,Y)Ẏ = F(t,Y) . (48)

Our formulation originates sparse mass matrices strongly dependent on Y.
Nodal amplitudes and nodal positions are found interlaced in vector Y, ordered
in such way that M is a quasi-diagonal block matrix. The solution of the initial
value problem (48) can be obtained by an appropriate ODE integrator. In the
present case, we use the function ode15s from Matlab ode suite [23], a vari-
able order variable time-step ODE integrator for stiff problems. We included
this function in our Matlab code, exploited the sparsity of the mass matrix M
and selected the numerical differential formulae methods to perform the inte-
gration. The details of the interface that implements this spatial discretization
and applications of the MFEM can be found in [18, 8, 22] and the references
therein.

6.2. Numerical simulation
The numerical results presented here are obtained in the Matlab environ-

ment using a computer with an Intel Core i7 − 3960X processor at 3.30 GHz.
We compute all the integrals without truncation error using Lobatto’s quadra-
ture and use the existing standard values of the optional user-modifier method
parameters, such as the minimal node distance allowed or the ODE solver toler-
ances. Below we present some examples of dilations γ that satisfy the hypotheses
(H1) and (H2) about the domain Q̂.

We assume that γ(t) = β(t)−α(t), −α′(t) > 0 and β′(t) > 0. So, considering
a limited variation (say by K) of the position of both moving boundaries, we
must have

0 < −α′(t) ≤ K , 0 < β′(t) ≤ K , for allt ≥ 0 . (49)

Let ∣∣∣∣
α(t) = α(0)− α1Ψi(t) , 0 < α1,
β(t) = β(0) + β1Ψj(t) , 0 < β1,

(50)

where the indices i and j may be equal or not.
Examples of functions Ψ.
1. Integrating each of inequalities (49) from 0 to t, we obtain Q̂ defined by

(50) with
Ψ1(t) = t , α1 ≤ K , β1 ≤ K .

Note that, in this case, we have linear boundaries.
2. The lateral boundary of Q̂ given by

Ψ2(t) = (t + t0)
1/n − (t0)

1/n
,

for n = 2, 3, ... and t0 =
(

α1
nK

) n
n−1 , or t0 =

(
β1
nK

) n
n−1

, is not linear.
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3. This example shows that when t → ∞ the domain Q̂ is asymptotic to a
cylinder

Ψ3(t) =
1

n
√

t0
− 1

n
√

t + t0
,

with α1 = β1 = 1 and 1/t0 = (nK)n/(3n−1).

Example 1: Let Q̂ be defined by

α(t) = α(0)−Ψ3(t) , β(t) = β(0) + Ψ3(t) , t ≥ 0 ,

with n = 2 and t0 = 1. In order to illustrate the asymptotic behaviour of the
solutions under the assumptions (H3)−(H5), we consider system (2) in Q̂, with
Ω0 =]0, 1[,

a1(s) = 1 + sin(2s) , a2(s) = 1 +
1

1 + s2
,

and

f1(x, t) =
0.1e−x

(1 + t)10
, f2(x, t) =

0.01x

(1 + t)2
.

Hypothesis (H5) is satisfied with ma = 0, Ma = max{Ma1 , Ma2} = 2 and the
following Lipschitz constant A ≥ max{A1, A2} = 2. Moreover, the external
sources f1 and f2 satisfy (H4). We perform the numerical simulation using the
initial conditions

u0(x) = 32(α(0)− x)(x− β(0)) and v0(x) = 1− cos(4πx) ,

which satisfy (H3). Initially, the population of the first species is concentrated in
the middle of Ω0 and the individuals of the second kind constitute two clusters,
each one in half of the spatial domain.

We computed the numerical solution at several times from t = 0 to t = 1, for
both the dependent variables, with local polynomial approximations of degree
5 in each of the four finite elements used. Initially, nodes are placed forming
uniform grids in Ω0.

In Figure 1, we observe the extinction of both species which is consistent
with the exponential decay of the solution. Before that occurs, the behaviour
of the solutions is different: we see a high rate of decay of the density of the
population (the death of individuals) of the first specie, without significant
diffusion in Figure 1 (left), however, in the first instants, Figure 1 (right) shows
the mobility of a large number of individuals of the second kind to the central
region.

To display better the regularity of the solution in the neighborhood of the
moving boundaries, in Figure 2 (left), we present a zooming of profiles for the
dependent variable u, centered at (β(t), 0). In figure 2 (right) we plotted X2,j(t)
versus v(X2,j(t), t), for 0 ≤ t ≤ 1. We observe the descendending trajectories
of the interior separation nodes and that the evolution of the adaptive mesh
processes with smoothness even though the initial situation where the solution
has sharp variations.

22



Figure 1: Solution profiles at different times for u (left) and for v (right)

Figure 2: Zooming of Figure 1 on a region centered in (β(t), 0), for u (left) and trajectories
of the separation nodes on the mesh associated to v (right)

As we use a high degree local approximation, the MFEM does not have
to relocate them quickly. We have similar smooth trajectories of grid nodes
associated to u.

The approximate numerical solution is shown in the 3D graph of Figure 3.
We observe the decline of solutions u (left) and v (right), with the increasing
of time. Finally, in Figure 4, we represent the history of values u (left) and v
(right) for two fixed points of spatial domain, x1 = 0.25 and x2 = 0.5. We see a
high rate of decay of values u(xk, t) and v(xk, t), k = 1, 2, as t increase, leading
to an exponential energy decay of solutions.

Example 2: In this second example we use a different limited dilation γ
defined by Ψ2, with n = 3, K = 1/2 and α1 = 1, that is

α(t) =
√

2/3− 3
√

t + (2/3)3/2
, β(t) = 1− α(t) , t ≥ 0 .

We want to illustrate that the exponential decay of the solution depends on an
appropriate rate of decay of functions fi, i = 1, 2. So, we consider

a1(s) = 2− 1
1 + s2

, a2(s) = e−s2
,
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Figure 3: Evolution of the approximate solution u (left) and v (right) in space-time domain

Figure 4: Asymptotic behaviour of the solutions u (left) and v (right)

and the reaction forces

f1(x, t) =
0.1x

(1 + t)4
and f2(x, t) =

e−x2

(1 + t)6
. (51)

Initial conditions are given by u(x, 0) = S3(x) and v(x, 0) = S̄3(x), where S3,
S̄3 represent the natural spline functions of degree three, that interpolate the
points of coordinates

{(0, 0), (0.2, 1), (0.5, 0.5), (1, 0)} and {(0, 0), (0.6, 0.65), (0.8, 1), (1, 0)},
respectively. This data satisfies the hypotheses of Theorem 1.

Numerical simulations are carried out using independent initial grids with
five points. According initial conditions we have concentrated the interior sepa-
ration nodes on the first half of spatial domain, for u, and near the right end of
Ω0, for v. The initial partitions of Ω0 are determined by the points 0, 0.1, 0.25,
0.5 and 1, for the grid associated to u and by 0, 0.5, 0.75, 0.9 and 1, for the grid
associated to v. The MFEM solution were obtained with locally approximations
of degree four in each finite element of both grids. The integration time interval
considered is [0, 1].

The distribution of the two population densities, in the non cylindrical do-
main Q̂ for t ≤ 1, are shown in Figure 5. As expected, we observe that the
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Figure 5: Approximate solution u (left) and v (right) in Ωt×]0, 1[

Figure 6: Evolution of population densities at different times, u (left) and v (right)

extinction of population of both species occurs in a finite time. These results
demonstrate that the MFEM can produce accurate results efficiently using a
reduced number of nodes as well as calculation time. In Figure 6, we see the
results obtained for u(x, tk) (left) and v(x, tk) (right), computed for various in-
stants tk. We observed similar behaviours of two species: a decrease in both
populations in time, together with a more uniform redistribution in space of
each specie, due to the mobility of a large number of individuals.

The MFEM automatically relocates moving nodes in order to concentrate
them in regions where the solution has sharp profiles. As we use a five degree
local approximation the method is able to move nodes with smoothness. This
can be seen in Figure 7 were we present the movement of two boundaries and
the interior separation nodes associated to u. We have an analogous regular
smooth movement for the grid associated to v.

Finally, in Figure 8, we plotted the dependent variable v versus time for a
two different reaction forces associated to the second PDE: f2 defined in (51)
and a different function f̄2(x, t) = te−x2

, at two fixed values of spatial variable
x. It is observed that (see Figure 8 (left)), the asymptotic decay of energy for
f2. On the contrary, in Figure 8 (right), we see that function f̄2 does not have
an appropriate decay leading to an asymptotic behaviour of the solution.
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Figure 7: Mesh movement, associated to u

Figure 8: History of v(x, t) at two fixed values of x for the functions f2 (left) and f̄2 (right)

7. Conclusions

We prove the existence and uniqueness of strong global solutions for a large
class of nonlocal nonlinear coupled systems with moving boundaries. Moreover,
we show the exponential decay of the solutions. By our numerical algorithm,
based on the MFEM with piecewise polynomial of arbitrary degree basis func-
tions in space, we are able to solve the initial problem without using the trans-
formation in the cylindrical domain. Two numerical experiments were presented
considering different dilations γ, to show the moving boundary for the problem
and the dependence of the exponential decay of the solutions on the functions
fi, i = 1, 2. The numerical results demonstrate the accuracy and robustness of
our Matlab code based on the MFEM; in particular, they are in agreement with
the asymptotic behaviour of the analytic solution. The application of Euler-
Galerkin finite element method to establish an error estimate of solutions for
our problem is in progress.
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